Gaussian Riemann derivatives

نویسندگان

چکیده

J. Marcinkiewicz and A. Zygmund proved in 1936 that, for all functions f points x, the existence of nth Peano derivative f(n)(x) is equivalent to both f(n−1)(x) generalized Riemann $${{\tilde D}_n}f\left(x \right)$$ , based at x,x + h,x 2h,x 22{h,…,x} 2n−1h. For q ≠ 0, ±1, we introduce: two q-analogues n-th Dnf(x) Gaussian derivatives qDnf(x) $$_q{{\bar are h, x+qh, x+q2h,…, x qn−1h x+h,x qh, q2h,…,x+qnh; one analogue symmetric $$D_n^sf\left(x $$_qD_n^sf\left(x (x), x±h, x±qh, x±q2h, …, x±qm−1h, where m = ⌊(n+1)/2⌋ (x) means that taken only n even. We provide exact expressions their associated differences terms binomial coefficients; show satisfy above classical theorem, satisfies a version theorem; conjecture these results false every larger classes derivatives, thereby extending recent conjectures by Ash Catoiu, which update answering them few cases.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Mean Value Theorems for Generalized Riemann Derivatives

Let x, e > 0, uo < ... u O be real numbers. Let f be a real valued function and let A (h; u, w)f (x) h-d be a difference quotient associated with a generalized Riemann derivative. Set I = (x + uoh, x + Ud+eh) and let f have its ordinary (d 1)st derivative continuous on the closure of I and its dth ordinary derivative f('I) existent on 1. A necessary and sufficient condition that a ...

متن کامل

Ladder Heights , Gaussian Random Walks , and the Riemann Zeta Function

Yale University and University of California, Berkeley Let Sn n ≥ 0 be a random walk having normally distributed increments with mean θ and variance 1, and let τ be the time at which the random walk first takes a positive value, so that Sτ is the first ladder height. Then the expected value EθSτ, originally defined for positive θ, may be extended to be an analytic function of the complex variab...

متن کامل

Generalized GL, Caputo, and Riemann-Liouville derivatives for analytic functions

The formulations of Riemann-Liouville and Caputo derivatives in the complex plane are presented. Two versions corresponding to the whole or half plane. It is shown that they can be obtained from the Grünwald-Letnikov derivative.

متن کامل

Fractional Diffusion based on Riemann-Liouville Fractional Derivatives

A fractional diffusion equation based on Riemann-Liouville fractional derivatives is solved exactly. The initial values are given as fractional integrals. The solution is obtained in terms of H-functions. It differs from the known solution of fractional diffusion equations based on fractional integrals. The solution of fractional diffusion based on a Riemann-Liouville fractional time derivative...

متن کامل

On q–fractional derivatives of Riemann–Liouville and Caputo type

Abstract. Based on the fractional q–integral with the parametric lower limit of integration, we define fractional q–derivative of Riemann–Liouville and Caputo type. The properties are studied separately as well as relations between them. Also, we discuss properties of compositions of these operators. Mathematics Subject Classification: 33D60, 26A33 .

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Israel Journal of Mathematics

سال: 2022

ISSN: ['1565-8511', '0021-2172']

DOI: https://doi.org/10.1007/s11856-022-2408-1